
COMPUTER SCIENCE

H
ar

d
w

ar
e

• Hardware

• Communication
Infra-structure

So
ft

w
ar

e • Programs

• Software Infra-
structure

E
ff
ic

ie
n
t

al
gs

+
d
at

a
st

r.

• Algorithms

• Data Structures

Introduction

"Algorithms change/d the world"

Precise instructions of how to add, subtract, multiply,

divide, extract square roots, get digits of π,...

 [Al Khwarizmi, AD 600, Baghdad]

Unambiguous, precise, mechanical, efficient and

correct

Definition "Algorithm"

Informal:

An algorithm is any well-defined computational

procedure that takes some value, or set of values, as

input and produces some value, or set of values, as

output.

An algorithm is thus a sequence of computational

steps that transforms the input string into an output

string.

Three questions to ask - algorithm

After we understand what it does or is supposed to

do.

1. Is it correct?

2. How much time and/or space does it take, as a

function of the input size?

3. Can we do better?

Correctness

Definition:

— An algorithm is correct if, for every input instance,

it halts with the correct output.

— A correct algorithm solves the problem.

— An incorrect algorithm therefore:

• ... <see class>

• ... <see class>

Usefulness of incorrect algorithms

Sometimes, incorrect algorithms are useful or required

The algorithm

- must halt

- should give the correct result "mostly”

- Often algorithms may perform well in practice, but

may fail sometimes.

Are they useful or desirable? Heuristics are examples.
 (see class for details)

Time and Space
We will measure time and
space in "big oh”

Time:

— elementary operations count

Space Usage:

Counting units of

— Internal memory

Sometime, say in dbases, we count

— Disc -Tape

Establishing the Correctness

of an Algorithm
By definition, it must: halt and return the correct

result.

(1) We must show that it always halts; that part is

usually easy.

(2) How to show that it returns the correct result?

That is sometimes interesting.

A Sequence

• The first 21 numbers are:

0, 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233

377, 610, 987,1597, 2584, 4181, 6765

What can we say about this sequence?

Many things

• Non-negative

• Increasing

• Rapidly increasing almost as fast as 2n, in fact a

good approximation is: 20.694n

• If we call Fn the nth number then

 Fn = Fn-2 + Fn-1 where n>1 and

 F0 = 0 and F1 =1.

Fibonacci Numbers

SCIENCEphotOLIBRARY

Fn is called the nth Fibonacci number.

Fibonacci was living between 1170 and 1250.

Fibonacci Numbers: brief sketch
Fibonacci numbers are also used for Fibonacci Search an alternate, O(log n)

algorithm for searching in an array of n numbers.

Find smallest Fibonacci number, Fm >= n. Then split array in two of sizes Fm-1

and Fm-2.

Recurse on the appropriate subarray after comparing your search key to the

element in array position between the two subarrays.

Several advantages:

• It uses addition and subtract only as opposed to division by 2 as does

binary search.

• It has a different array indexing pattern and caching etc. are different to

binary search.

• If the array is too big to fit into main memory Fibonacci Search may

outperform Binary Search,

Pineapple

The number of spirals going in each
direction is a Fibonacci Number.

Here, there are 13 spirals that turn
clockwise and 21 curving
counterclockwise.

In sunflowers, the number of clockwise and counterclockwise spirals will always be

consecutive Fibonacci Numbers like 21 and 34 or 55 and 34.

Fibonacci Occurrences in Nature

Number of Petals Flower

3 petals (or 2 sets of 3) lily (usually in 2 sets of 3 for 6 total), iris

5 petals buttercup, wild rose, larkspur, columbine

(aquilegia), vinca

8 petals delphinium, coreopsis

13 petals ragwort, marigold, cineraria

21 petals aster, black-eyed susan, chicory

34 petals plantain, daisy, pyrethrum

55 petals daisy, the asteraceae family

89 petals daisy, the asteraceae family

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...

Algorithm I for Fibonacci

Function fib1(n)

if n = 0 return 0

if n = 1 return 1

return fib1(n-1) + fib1(n-2)

The Three Questions

1. Is the algorithm correct?

2. How much time does it take to compute?

3. Can we do better?

1. is easy, that it follows simply by definition of the

Fibonacci sequence. But let us do this formally.

 Observe first that it always halts. Why? -> class

1. Is the algorithm correct?

1. It is a recursive algorithm. So, a proof by

induction seems the best way.

First observe that the algorithm always halts.

base cases(l):

if n = 0 the algorithms returns 0 & stops by

definition, F0 = 0, so: correct

if n=1 the algorithm also returns 1 & stops by

definition F1 = 1 so: correct

1. Is the algorithm correct? cont'd

1. Assume therefore now that n>1 and that the

algorithm has correctly computed fib1(0),…,

fib1(n-1).
Then, the algorithm returns

"return fib1(n-1) + fib I(n-2)"

This recursively calls fib I(n-l) and fib I(n-2)

and adds these two values. By induction hypothesis, fib

I(n-l) and fib I(n-2) have been correctly computed.

By definition of Fn, Fn = Fn_2 + Fn-1 for n≥2. Thus, the

algorithm is correct.

2. How much time does it take to

compute?

• The time is a function of n, let us call it T(n)

• T(n) ≦ 2, for n ≦ 1 why?

• For larger values of n, i.e., n≥2

 T(n) = T(n-1) + T(n-2) + 3

so, we can see that T(n) ≥ F(n)

bad news?!

to compute T(200) > F(200) > 2138 steps would be

required which is huge.

E.g., the Japanese Fugaku can do 442.01 petaFlop. To

compute F(200) would longer than the earth is expected to

live.

1 quadrillion calculations per second is a Peta Flop.

https://en.wikipedia.org/wiki/Fugaku_(supercomputer)

SO, CAN WE DO BETTER?

3. Can we do better?
Why is fib1 so bad?

Function fib1(n)

if n = 0 return 0

if n = 1return 1

return fib1(n-1) + fib1(n-2)

A SECOND ATTEMPT FIB2

Function fib2(n)

 if n = 0 return 0

 create an array f[0 .. n]

 f[0] = 0, f[1] = 1

 for i = 2 … n

 f[i] = f[i-1] + f[i-2]

 return f[n]

Replace recursive calls

by array accesses.

Why recompute every time

when you can just do a look-up?

The three questions

1. Is the algorithm correct?

2. How much time does it take to compute?

3. Can we do better?

1. Is the algorithm correct?

again, here the correctness (incl. that it halts)

follows from the above as the recursive call is

replaced by an equivalent array access.

2. How much time does it take to

compute?

Except of the small number of constant-time

operations the main work is carried out in the

loop.

— the loop body is one addition

— and is executed n-1 times

So, the total number of addition etc. operations taken

by fib2 is linear in n. Are all operations O(1)?

Careful
We get that fib2 executes a linear number of additions.

However, the numbers are huge.

Our standard model of analysis assumes that the numbers

have at most log n (minimum required to store the number

n). [In real computers: constant number of bits (32 or 64)].

Here the numbers are about 0.694n bits long! Why?

Such big numbers cannot be added in one step!

Adding 2 n-bit numbers takes time proportional to n. (bit

operations) Such complications while rare, need to be

carefully taken into consideration!

Lemma: The running time of fib2(n) is O(n) arithmetic operations, some

of which take O(n) bit manipulations.

[This is more detailed than we usually argue in our “O” analysis because

here, we have words which are longer than O(log n) bits. Rare though!]

What is the running time to compute the Fibonacci then?

- There is a difference in required run-time between computing the nth

Fibonacci number only, or all Fibonacci numbers up to the nth.

3. Can we do better? YES, by reduction to fast matrix multiplication (not

discussed here) the nth Fibonacci number can be computed using

O(log n) arithmetic operations.

Conclusion

Relationship between matrix multiplication

and Fib – only for those interested

Doubling n is easily achieved by plugging in 2n instead of n. This leads to a logarithmic number

of operations to compute:

Very brief sketch of idea.

Golden ratio

• Two numbers a,b are said to be in the "golden

ratio, Φ," if

Golden ratio (equivalent)

• Two numbers a,b are in the "golden ratio, Φ," if

So, since b/a=1/Φ we get: 1+ 1/Φ= Φ

GOLDEN RATIO

Now solve 1+ 1/Φ = Φ

Φ + 1 = Φ2 rewritten as: Φ2 - Φ - 1 = 0

By using the solutions to a quadratic formula,

ax2 + bx + c

For a =1, b=-1 and c=-1

we get:

 Φ1 = (1+√5)/2 and Φ2 = (1-√5)/2

Because Φ is a ration between positive quantities, Φ is positive. Φ = 1.618033988….

x =
−𝑏± 𝑏2−4𝑎𝑐

2𝑎

GOLDEN RATIO AND FIBONACCI

• By induction, we can prove: Fi =(Φ1
i - Φ2

i)/√5

• Note that |Φ2
i|/√5 < 1/√5 (as |Φ2|<1) thus |Φ2

i|/√5 < ½ and therefore:

• Fi =floor(Φ1
i/√5 + ½)

• So: the ith Fibonacci number is Φ1
i/√5 rounded to the nearest

integer. Exponential growth!

• Furthermore, the ratio between two consecutive Fibonacci

numbers approaches the Golden Ratio.

Recall Big-0

Let f(n) and g(n) be functions from the positive

integers to the reals. We say that

f(n) = O(g(n)) if there is a constant c>0 such that

f(n) < c*g(n).

This means that f grows no faster than g.

Also, the constant c allows us to ignore small

values of n.

Course requirement

I will assume that you are familiar with big-O.

if not, please ! please read up fast.

A COMMON STRATEGY:
LOOP INVARIANT

• For algorithms that execute, e.g., a main loop (or a recurrence)

• Set up a Loop invariant, say L

• Say the algorithm executes a loop n times.

• L(i): statement about the algorithm is true before the ith

execution of the loop (i>0).

• Base Case: this is the base case, i.e., after initialization of the

variables (if any), before entering the loop the first time. We need

to show that for invariant is true for the base case.

Loop invariant continued

Termination: when the loop terminates, the truth

of the invariant helps us establish the

correctness of the algorithm.

Maintenance: prove that if L(i-1) is correct

before the execution of the loop then L(i) is also

true after the loop execution.

A VERY SIMPLE EXAMPLE

• A warm-up done in class

• Finding the maximum in an array A[1….n] of integers.

Max:= A[1]

For i = 2, …, n do

 if A[i]> Max then Max := A[i]

 Discussion on this in-class

Insertion-Sort

INSERTION-SORT(A)

j:=2 // to make life easier to prove correctness //

for j:=2 to length of A
key := A[j]

// insert A[j] into A[1..j-1] //

i:=j-1

while (i>0 and A[i] > key)

A[i+1] := A[i]

i:=i -1

A[i+1] := key

• In class

Example

Halting

The algorithm halts because it executes a finite
number of statements a finite number of times,
where each statement takes finite time to
execute.

How do we proceed?

First, we will establish the correctness of the
while-loop.

Then, the correctness of the For-loop

This will complete the entire proof.

Notation: A[i..j] is a subarray of array A
consisting of the elements A[i], A[i+1],..., A[j]

CORRECTNESS OF THE WHILE-LOOP

Input: A[1..j-1] a sorted subarray of numbers and A[j] possibly in the wrong

relative order w.r.t. A[1…j-1]

Output: A sorted array, A[1..j], of the numbers originally stored in A[1..j]

key := A[j]

i:=j-1

 while (i>0 and A[i] > key)

A[i+1] := A[i] [move A[i] over]

i:=i – 1 [proceed to the next element left]

 A[i+1] := key [place the key in its correct position

j-1 j j
1 1

PROVING THE CORRECTNESS OF THE
WHILE-LOOP

LOOP INVARIANT:

at the beginning of each iteration of the while-loop

A[i+2],…,A[j] are each greater than key and

A[i+2..j] contains the sorted values originally stored in A[i+1..j-1]

A[1..i] is untouched by the while loop

i+1
key

CORRECTNESS WHILE-LOOP
CONT’D

Base-case

“at the beginning of each iteration of the while-loop

A[i+2],…,A[j] are each greater than key and

A[i+2..j] contains the sorted values originally stored in A[i+1..j-

1]

A[1..i] is untouched by the while loop“

Before the first time through the while loop, i:=j-1

thus i+2 = j+1 and since A[j+1] does not exist the statements (A and B) are

true.

Also (C) is true (A[1..i] is untouched) since we did enter the loop so far.

CORRECTNESS WHILE-LOOP
CONT’D

Maintenance
“at the beginning of each iteration of the while-loop

A[i+2],…,A[j] are each greater than key and

A[i+2..j] contains the sorted values originally stored in A[i+1..j-1]

A[1..i] is untouched by the while loop“

Assume that the loop invariant is true and now we enter the

while-loop.

Since A[i]>key we move A[i] to A[i+1] so now A[i+1]> key

After we decrement i, now A[i+2] >key (in addition to the other

elements previously considered up to …. A[j])

The subarray of considered elements remains sorted

Subarray A[1 ..i] remains untouched and has shrunk by 1.

Correctness while-loop cont'd

Termination
"at the end of final iteration of the while-loop A[i+2],...,A[j] are each greater

than key and A[i+2..j] are the sorted values originally stored in A[i+1..j-l]

A[1..i] is untouched by the algorithm"

Two cases arise:

1) The loop condition is violated because i = 0 or

2) A[i] ≤ key

Assume 1) i.e., i=0 then since A[i+2 ... j] is the sorted array of values

originally stored in A[i+1.. j-1], for i=0, this means A[2..j] is the sorted array of

values from A[1...j-1] and A[2],...A[j] are all greater than key. The final

assignment statement A[i+1]=key puts A[1]=key thus A[1...j] is the sorted

array of all values originally stored in A[1...j].

Correctness while-loop cont'd

Termination
"at the end of final iteration of the while-loop A[i+2],...,A[j] are each greater

than key and A[i+2..j] are the sorted values originally stored in A[i+l..j-1]

A[1..i] is untouched by the algorithm"

Now assume 2), i.e., A[i] ≤ key

By loop-invariant, A[i+2 ... j] is the sorted array of the values originally stored

in A[i+1.. j-1]; all elements are > key.

A[1..i] is untouched since A[1 ...i] was sorted before and A[i] ≤ key, by

transitivity, all elements in A[1...i] are sorted and ≤ key.

The final assignment puts key into its correct position, i.e., A[i+1] = key thus

the entire array A[1..j] is now sorted.

Setting up the invariant for
 Insertion Sort

• INVARIANT L[j]

At the start of each iteration of the for loop the

subarray A[1...j-1] consists of the elements

originally stored in A[1..j-1] but now sorted

(subarray A[j… A.length] is untouched – we will not prove this easy fact)

Correctness of Insertion Sort

Base Case:

Before the algorithm enters the loop,

what do we know?

We know that

- the input is stored an array

- j = 2

Base case cont'd

"At the start of each iteration of the for loop the
subarray A[1...j-1] consists of the elements
originally stored in A[1..j-1] but sorted."

Since j=2, we need to show that

"At the start of each iteration of the for loop the
subarray A[1…1] consists of the elements originally
stored in A[1..1] but now sorted."

A[1..1]=A[1].

- A[1] contains the element originally in A[1]

- A[1] by itself is clearly sorted

Termination

At termination:

If we have shown that L(j) is true then
"At the start of each iteration of the for loop the subarray A[1...j-1] consists of the

elements originally stored in A[1..j-1], but now sorted."

when the loop terminates j > A.length, in fact

j=A.length+1 as the loop-variable, j, is incremented

by one each time.

So, the subarray A[1..A.length] is sorted and

contains the elements originally stored in A. Thus,

the algorithm returns the correct result.

Loop maintenance

At the start of each iteration of the for-loop, the

subarray A[1...j-1] consists of the elements

originally stored in A[1..j-1] but now sorted.

Now, consider j to be incremented

Key := A[j]

Key and A[1..j-1] contain all elements of A[1..j]

Loop maintenance cont'd

i=j-1 // sets the limit of the subarray to be

examined subsequently//
while (i>0 and A[i] > key)

A[i+i]

:=A[i] i:=i -

1

A[i+1] := key

We have already shown that if A[1..i] is a sorted array and key is
a value then after the execution of the while-loop A[1..i+1] is a
sorted array containing the values of A[1..i] and key.

Loop maintenance cont'd

i=j-1 // sets the limit of the subarray to be

examined subsequently//
while (i>0 and A[i] > key)

A[i+i] :=A[i]

i:=i -1

A[i+1] := key

Since i=j-1, by loop-invariant, we have that A[1..j-1] is a sorted

array of the values originally stored in A[1..j-1]. Key = A[j] so,
with the above, A[1..j] will be a sorted array of the values
originally stored in A[1..j]

2. Time and Space Complexity

The algorithm executes two nested loops, each

loop is executed at most O(n) times. The inner

loop has O(1) time complexity. Except for the

inner loop, the outer loop is O(1).

Therefore, the total time complexity is O(n2).

Except for a constant number of additional

storage locations, the only storage used is the

input array; the algorithm is "in-place".

Thus, the space complexity is O(n).

3. Can we do better?

Yes, we already know that e.g., MergeSort is an

O(n log n) algorithm using O(n) space.

I recall the algorithm and its analysis briefly as

another example of how to prove correctness.

MergeSort

MERGE-SORT(A, p, r)

// sorts a subarray A[p..r] of numbers//

If p<r

q = floor{(p+r)/2}

MERGE-SORT(A,p,q)

MERGE-SORT(A,q+1,r)

MERGE(A,p,q,r)

Algorithm MERGE

MERGE(A,p,q,r)
//Forms a sorted (sub)array A[p..r] from two sorted (sub)arrays

A[p..q] and A[q+1..r]; L, R are two temporary arrays//

n1=p-q+1; n2=r-q //sizes of the “input arrays”//

Copy A[p..q] into L[1.. n1]; add L[n1+1]=∞

Copy A[q+1..r] into R[1.. n2]; add R[n2+1]=∞

i=1; j =1

Algorithm MERGE cont'd

MERGE(A,p,q,r)

For k= p to r //go through all elements //

 if L[i] ≤ R[j]

 A[k] = L[i]

 i = i+1

 else A[k] = R[k]

 j = j+1

First we analyze MERGE

1. Correctness

Good exercise (when you are done then look at the

textbook for a solution to verify yours against)

2. Time Complexity

 Let n= r-p+1

 MERGE has three loops examining O(n) elements

 the first two copy array elements into L and R, resp.

 the last executes the loop r-p+1 = O(n) times and

performs O(1) operations at a cost of O(1) each; so

total: O(n)

First we analyze MERGE cont'd

2. Space Complexity

there are three arrays of size O(n)

3. Can we do better?

 no – we need to examine all elements thus Ω(n) is a

lower bound.
(Lower bound means we cannot do better, i.e., no algorithm can

be designed which performs the task in a smaller time bound. We

must look at least at all elements ones.)

Same for space (we must store the elements as input; the

additional arrays are all of the same size which does not change

the space complexity in “O”).

Question

• What would happen if we were to attempt the

MERGE procedure in the original array A?

• Any impact on the complexity? Important
exercise.

Divide&Conquer Algorithm D&C

• Recall D&C

• Break problem into sub-problems that are

smaller instances of the same type of problem

• Recursively solve the subproblems

• Combine the answers to the subproblems into

an answer to the original problem

Divide&Conquer Algorithm D&C

• illustration see class

Here: D&C MERGE-SORT

• Break problem into subproblems that are

smaller instances of the same type of problem

• "the subarrays: A[p..q] and A[q+1..r]"

• Recursively solve the subproblems
• "MERGE-SORT(A,p,q) and MERGE-SORT(A,q+1,r)"

• Combine the answers to the subproblems into

an answer to the original problem
• "MERGE(A,p,q,r)"

1. Correctness of MERGE-SORT

There is no loop, but a straight recurrence. A proof

by induction seems feasible.

Induction on the size of the array n=r-p+1.

Base Case: n=1 (i.e., r=p)

a single element array is sorted

Induction Hypothesis: assume that MERGE-

SORT sorts any array of sizes 1,..., n-1, for n ≧2.

1. Correctness of MERGE-SORT cont'd

Show that it sorts any input array of size n

Since n ≧ 2, p<r thus the statements inside the "if-
statement" are executed

With q, the array is split into two (roughly equal-
sized) subarrays (A[p..q] and A[q+l..r])

Since their sizes are less than n, by induction and
after calls to MERGE-SORT on them, they are
correctly sorted.

The final step MERGE then sorts the two sorted
subarrays (the correctness follows from the
correctness of MERGE)

2. Complexity

Again let n = r-p+1

The space used is: O(n) because MERGE-SORT

uses only a constant additional locations (note that

the maintenance of the recurrence also takes

some storage which is linear in n. This requires re-

using of the additional array space used by

MERGE! Otherwise, this would be O(n log n) !)

MERGE has O(n) space usage as we said

2. Complexity cont'd

• Now, let us analyze the time complexity.

• It is given by this recurrence relation

• T(n) = 2*T(n/2) + 0(n) with T(1) = O(1)

— Why? See class

• There are many ways to solve this recurrence.

• You will have seen some already before. I recall.

Solving the recurrence
T(n) = 2 T(n/2) + O(n)

a) By developing the recurrence:

Let us say it is exactly n not O(n) - makes notation easier

Otherwise, we can carry the constants through.

T(n)=2T(n/2)+n=2[2T(n/4)+n/2]+n = 4T(n/4) + 2n

=22T(n/22) + 2*n = 22[2T(n/23)+n/22)] + 2n

=23T(n/23) + 3*n = ...

 = 2iT(n/2i) + i*n , for all i=0,...,?

 What is i maximally?

Solving recurrences cont'd

• i is maximally log2 n because then 2i = n

T(n) = 2iT(n/2i) + i*n = 2log
2
n T(n/2log

2
n)+(log2 n)*n since

T(n/2log
2
n) = T(1) = O(1) ; T(n) = O(n) + (log2 n)*n

=O(n)+n*log2 n = O(n*log2 n). We therefore obtain:

Lemma: MERGE-SORT sorts n elements

 in O(n log n) time.

3. Can we do better?
In our model of computation we count comparisons.

(In any sorting algorithm discussed, we compared elements to

each other and then rearranged the array. So, this is natural to

do. Not in all sorting algorithms mind you.)

Show: no sorting algorithm can sort n arbitrary

numbers in o(n log n) comparisons.

(this is little "oh"; informally, that means with fewer than n log n

comparisons)

Comparisons

A comparison between two numbers a, b

Consider now sorting three numbers a,b,c

Sorting by comparisons

In class:

comparison tree for sorting 3 elements

Sorting n elements counting

comparisons only

Any comparison-based algorithm that sorts n

elements has an execution that can be described

by a comparison tree.

If we sort n elements, any permutation of the n

elements can appear as output thus as one of

the leaves of the tree.

Thus the tree must have n! leaves.

Height and Depth

The depth of a node is the number of edges present in path from
the root node of a tree to that node.

The height of a node is the number of edges present in the longest
path connecting that node to a leaf node.

Sorting n elements counting

comparisons only - depth of tree
• The tree is binary.

• What is the smallest depth of a binary tree?

in-class A bin. tree with m leaves has depth of

at least log m. (Omitting the ceiling function)

Thus, the depth > log(n!)

log(n!) > c*n log n, for some c>0

Why? In-class

a better bound for n!

Stirling's approximation provides a more

precise bound

Cont'd

• The depth of the tree corresponds to the number of

operation (of type comparison) we need to do.

Theorem: Any comparison-based sorting algorithm

has an Ω(n log n) lower bound to sort n elements.

Corollary: MERGE-SORT is thus an optimal

comparison-based algorithm.

We need not look any further to get a better

algorithm (in terms of "big oh").

Back to Recurrences

What is the complexity of binary search?

Brief recall in-class

2. Time complexity

Recurrence: Let n be the size of the array in
which we carry out binary search.

T(n) = T(n/2) + O(1)

T(n) = T(n/21) + 1*O(1)= T(n/4) + 2*O(1)
= T(n/22) + 2*O(1)

= T(n/8) + O(1) + O(1) + O(1)

= T(n/23) + 3*O(1)... by induction

= T(n/2i) + i*O(1) for i = 1,…, log2 n

= T(n/2log
2
n) + log2 n*O(1) = O(log2 n)

 as T(1) = O(1)

Another example

(arises in the analysis of a multiplication algorithm -

not important right now here) T(n) = 3 T(n/2) + n

= 3[3T(n/22) + n/21] + n

= 32T(n/22) + 3n/21 + n =... <by induction>

= 3log
2
nO(1) + .. + (3/2)in + ... + (3/2)1n + n

 Note: 3
log

2
n = nlog

2

3

This is a geometric series -> 0(nlog
2
3) = 0(n1.59)

Geometric Series
(see textbook p. 1147)

Solving Recurrences by Substitution

The previous method, also known as Iteration

Method, often works, but is sometime error-prone.

If you have a good guess of what the solution is

then, the following method is faster to use.

Substitution Method

1. Make a guess

2. Prove using
induction

Example: T(n) = T(n-1) + n

1. Guess T(n) ≤ cn2

2. Prove using induction
Assume that T(k) ≤ ck2 for k < n, for some constant c>1

T(n) = T(n-1) + n ≤ c(n-1)2 + n ≤ cn2 -2cn +c + n

= cn2 - c(2n-1) + n ≤ cn2 for c>1 as -c(2n-1) < n

(actually c>1/2 would do)

Recall Tutorial

r\
Levels of

Recursion

Recursion Tree Method

Amount of work T(n)

Amount of

work per

level

n

n

n

T(l)

O(n log n)

T(n) = T(n/3) + T(2n/3) + n

Master Theorem:

slightly simplified

Simplified setting for many D&C algorithms

Let a=# of subproblems, (n/b) = size of the

subproblems (assume ceiling function for n/b)

and n the total size if

if T(n) = aT(n/b) + O(nd), then

A. O(nd) if d > logba

B. O(ndlogn) if d = logba

C. O(n log
b
a) if d < logba

T(n) =

Proof Sketch

assume w.I.o.g. that n = bj, for some j.

The work carried out on level k of the recurrence tree

 is ak*0(n/bk)d, where

number of their work due to
subproblems sizes 0(nd)

ak*0(n/bk)d = 0(nd)(a/bd)k where k=0,...,logbn →

geometric series with ratio a/bd

Proof sketch cont'd

Three cases arise:

(1) a/bd< 1 -> series is determined by the first term

i.e., O(nd) [work is decreasing as we go
down the levels]

(2) a/bd= 1 -> all O(log n) terms are equal to O(nd)

(3) a/bd> 1 series (work per level) is increasing and

 its sum is determined by the last term O(nlogba)

3. cont'd

O(nd (a/bd)log
b
n) = O(nd(a log

b
n / (blog

b
n)d))

= O(alog
b
n)

= O(alog
a
n log

b
a)

=O(n log
b
a)

Example of uses of Master Theoreml

Binary Search

 T (n) = T(n/2) + 0(1)

 [again take n/2 to mean ceiling(n/2)]

What are a, b, and d for this example?

Binary search use of Master

Theorem 1

a =1 b = 2, d = 0

now calculate logba = log21 = 0

We are therefore in Case B and thus get:

T(n) = 0(ndlogn) = 0(log n) as d=0

Binary search is therefore 0(log n).

Revisit MergeSort

• T(n) = aT(n/b) + O(nd), a = 2, b=2 , d = 1

 logba = log22 = 1 which equals d

A. O(nd) if d > logb a

B. O(nd logn) if d = logb a <- O(n log n) since d=1

C. O (nlogba) if d < logb a

Master Theorem I gives us rapidly O(n log n)

Solving Recurrences

Master theorem 2 - slightly more general
Let a ≥ 1 and b >1, left f(n) be a function, and let T(n) be defined on the

nonnegative integers by the recurrence T(n) = a*T(n/b) + f(n)

1. If f(n) = O(nlogba-ε) for constant ε>0,

then T(n) = Θ(nlogba)

2. If f(n) = Θ(nlogba)

then T(n) = Θ(nlogba log n)

3. If f(n) = Ω(nlogba+ε) for constant ε>0, then if a*f(n/b) <

c*f(n) for some constant c <1 and all sufficiently large n

then T(n) = Θ(f(n))

Note

this setting is more precise and also

incorporates Θ bounds.

Working with the Master Theorem takes

practice!

Example: T(n) = 9T(n/3) + n

What do you expect?

Apply Master Theorem with

a=9, b=3 and f(n) = n

nlogba = nlog39 = Θ(n2)

Since f(n) = O(nlog39-ε) with ε =1, we are in

Case 1. Therefore: T(n) = Θ(n2)

Example: T(n) = T(2n/3) + 1

What do you expect?

Apply Master Theorem with a=1, b=3/2

and f(n) = 1

 nlogba = nlog3/21 =n0 = 1

Since f(n) = O(nlogba) = Θ(1), we are in

Case 2. therefore: T(n) = Θ(log n)

Example: T(n) = 3 T(n/4) + nlogn

• What do you expect?

• Apply Master Theorem

with a=3, b=4 and f(n) = n log n

nlogba = nlog43 = Θ(n0.793)

Since f(n) = Ω(nlog43+ε) with ε=0.2, we are in not quite
yet in Case 3.

We need to show that a*f(n/b) < c f(n) for some constant

 c <1 and all sufficiently large n.

Then, we will get: T(n) = Θ(f(n) = Θ(nlog n)

cont ’d : T(n) = 3 T(n/4) + nlogn

We need to show that af(n/b) < c f(n), for some

constant c <1 and all sufficiently large n.

 a*f(n/b) = 3*f(n/4) =

3*(n/4)log(n/4) ≤ (3/4)nlogn = (3/4) f(n), c=3/4

Therefore, we now get: T(n) = Θ(f(n) = Θ(nlog n)

Limitations of Master Theorem

Example: T(n) = 2 T(n/2) + n log n

• What do you expect?

• We cannot apply the Master Theorem.

• Attempt:

with a=2, b=2 and f(n) = n logn

nlogba = nlog
2
2 = Θ(n)

Case 3 does NOT apply.

"If f(n) = Ω(nlogba+ε) for constant ε >0, "

f(n) = n log n and nlogba+ε = n 1+ε.

Limitations of Master Theorem

cont'd
we have f(n) = n log n and nlogba+ε = n1+ ε

Is n log n = Ω(n1+ε) or not?

Note: n log n / n = log n

Ω(n1+ε)/n = Ω(n*nε /n) = Ω(nε)

but log n is not Ω(nε).

[Ω(nε)is exponential and log n only logarithmic.] So,

the Master Theorem cannot be applied here – GAP!

Limitations of Master Theorem

very simplified view
 1. If f(n) = O(nlogba-ε) for constant ε>0, …

 f(n) “is less than” nlogba-ε

2. If f(n) = Θ(nlogba) ….
 f(n) “is equal” to nlogba

3. If f(n) = Ω(nlogba+ε) for constant ε>0, …
 f(n) “is greater than” nlogba+ε

Where does the Master Theorem

help us?
f(n): …. (nlog

b
a-ε) … nlog

b
a …. nlog

b
a+ε ….

less equal greater

There are 2 “no”s of applicability. We saw a=2, b=2 and f(n) = n logn

Exercise: construct an example for the other ”no” gap of applicability..

 yes no yes no may be

Order Statistics

Objective:

— find the 1st, 2nd, median, or kth, or nth element in a

set of n elements

— We know how to find the 1st and nth element in

linear time, O(n). This is finding the minimum and

finding the maximum of a set.

Order Statistics

The median is informally defined as the

number in the set for which half of the

numbers are smaller and half are larger.

More precisely,

— The median (lower median) of a set of n numbers

is the element in position ⌊ n / 2 ⌋ after sorting the

elements in increasing order.

— Motivation - see class

Median cont'd

The median (upper median) of a set of n numbers is

analogously defined (replacing the floor function by the

ceiling function).

Let us design several algorithms for this important

order statistics.

I. Brute Force - see class

II. A randomized D&C algorithm

III. A worst-case optimal algorithm

Order statistics cont'd

• In fact, we will do more, we show how to

compute the kth order statistics, so the

median is just a special case.

• We call the algorithm Selection(S,k)

• Input: a set S of n elements [orderable]

and a parameter k with 1 ≤ k ≤ n.

 Output: the kth smallest element of S

Selection cont'd

Selection(S,k)=

Selection(SL, k) if k ≤ |SL|

v if |SL|< k ≤ | SL | + |SV|

Selection(SR, k -|SL|-|SV|)

if k >|SL|+ |SV|

cont'd

where:

• SL
= {x in S | x < v}

• Sv
= {x in S | x = v}

• SR
= {x in S | x> v}

Example: see class

1. Correctness

The algorithm is correct

Induction on |S|

| S | ={v} = 1 then k=l and the element v is

returned

Now assume that the algorithm correctly

computes the kth order statistic for any set S

where ISI <n.

proof of correctness Select

• Now consider a set S of cardinality n.

• First, the algorithm must determine the sizes

of the sets SL and SR The correctness of this

would have to be determined separately.

• If k ≤ | SL | then the kth order statistic lies in SL.

• The algorithm recurses correctly on SL.

• Otherwise, if | SL | < k ≤ | SL | + | Sv | then the

kth order statistic is one of the repetitions of

the element v. This is correctly returned.

proof of correctness Select

cont'd

if k > | SL | + | Sv| then the kth order statistic lies in

SR. Select is thus called on SR. But we need to

subtract the size of SL and the number of times v

occurs for the call. The reason is that these

elements are all smaller than the smallest element

in SR. This is done correctly by the algorithm.

2. Time Complexity

• The following recurrence describes the time
complexity of Selection(S,k)

If we were lucky and v were the median

then the kth order statistic could be computed in

T(n) = T(n/2) + 0(n)

using the simplified Master theorem

A. O(nd) if d>logba applies

because a=1, b= 2 and d=1; 1> Iog21 = 0

Thus T(n) = n.

Time Complexity cont'd

what is we are unlucky and the sets are very

unbalanced.

T(n) = T(n-1) + 0(n)

then T(n) = n2.

3. Can we improve upon this?

• Yes, in two ways

1) we show that a randomized algorithm (similar to

Quicksort) computes the kth order statistic in

expected O(n) time.

2) a more complex, but deterministic algorithm

exists that has O(n) runtime.

analysis to lead to improvement

Runtime of above algorithm depends on the

sizes of the sets, in particular on SL, SR

Let us assume, for ease of notation, that each

element is unique, so Svhas one element.

CASES arise: depending on the relative sizes
of SL, SR

cont'd

1. if we are lucky: |SL| = |SR|

then T(n) = T(n/2) + O(n) = ... = ?? see

class

2. if we are very unlucky, then one of SL, SR

is empty. Then, e.g., for the median we get

T(n) = O(n) + O(n-1) + ... + O(n/2) = O(n2)

see class

cont'd

3. "We are sort of lucky"

v is called good if it falls between the 1⁄4n and

3⁄4n element in sorted order.

Then, T(n) < T(3⁄4n) +O(n) = O(n)

This is still fine to get a fast algorithm! A constant

fraction of the number of elements gets removed in

each iteration. The analysis as to why this is O(n) is

similar to that of why T(n) = T(n/2) + O(n) = O(n)

cont'd

Lemma: On average a fair coin needs to be

tossed two times before "heads" is seen.

Proof: Let E = expected number of tosses before

heads is seen then E = 1 + 1/2E => E = 2

1 toss half the cases

done we recurse

Thus, after 2 split operations, on average, the array

will shrink to at most 3⁄4 of its size.

cont'd

• A randomly! chosen v has probability of 0.5 to be

good. So, 2 random choices of v on average

suffice.

Theorem: The expected run-time of the Selection

 Algorithm is O(n).

Deterministic Algorithm

• Now, we show that we can always achieve

O(n) run-time for median or any kth order

statistic. (so not only randomized, but

determinsitic)

Select(S,k)

1. Divide the n-element input array into n/5

groups of 5 element each + one group

containing the remaining n mod 5 elements.

EXAMPLE see class

algorithm cont'd

2. Find the Median of each of the 5 element

group by sorting them (say insertion sort O(1))

3. Recursively find the median, x, of the floor(n/5)

medians from 2.

4. Partition the input array around x

Let j:= 1+ number of elements ≤ x; call the Set SL

Let n-j:= remaining elements; call the set SR

algorithm cont'd

5. if j = k then return x

if j < k recursively call Select(SR , k-j)

else j > k call Select(SL , k)

Picture

Picture

> x

analysis

-2] ≥ 3n/10 - 6 ≥ # of elements

elements

guaranteed to be ≥ x

is thus 3n/10 - 6

two groups with fewer

than 5 elements not

counted

analysis cont'd

analogously for the # of elements guaranteed to

be ≤ x.

Analysis cont'd Steps 1, 2

and 4 O(n)

Step 3 T(⌈n/5⌉)

Step 5 T(7n/10 + 6) why?

analysis cont'd

• 7n/10+ 6 < n for n>20

• Sorting say 80 numbers is 0(1)

 Θ(1) if n ≤ 80

* T(n) =

T(⌈n/5⌉) + T(7n/10+6)+O(n) n > 80

analysis cont'd

• T(n) + c(7n/10+6) + O(n)

< cn/5 + c + 7cn/10 + 6c + O(n)

< 9cn/10 + 7c + O(n)

< cn for some c

by def. of ”O"

T(n) = O(n)

Result

Theorem: Selecting the kth element in a set of n

elements takes O(n) time.

The kth order statistic can be found in linear time (in

the size of the set).

QUESTION: why does this method NOT work

with groups of 3 elements (instead of 5)?

Extensions

In CS, we often do not only want to find

particular values (such as Min, Max, Median, kth

order statistics), but maintain them dynamically

under insertions and deletions.

See also dynamic binary search trees which are

designed for efficient searching when we allow

insertions and deletion.

Balanced Binary Search Trees

Downside
they take Ɵ(n log n) time to build.

• O(n log n) is clear (or?)

• Why also Ω(n log n)?

 Think about our sorting lower

 bound here!

Maintaining order statistics

• We already know a data structure to maintain

the min (or max) under a sequence of insertions

and deletions.

Which one?

Heaps

The Priority Queue organizations such

Heaps do that.

E.g. MinHeap on n elements:

□ FindMin O(1)

□ DeleteMin O(log n)

□ Insert(a new element) O(log n)

□ CreateHeap O(n)

 analogously for MaxHeaps

Examples and review of operations

• see class

— we will review these operations that you should

have seen before and analyze the performances in

class.

- see textbook or your old notes

How fast can we find the maximum in a

MinHeap or the minimum in a MaxHeap?
□ FindMin O(1)

□ DeleteMin O(log n)

□ Insert(new) O(log n)

□ Create O(n)

□ FindMax ???

□ DeleteMax ???

Where is the (a) maximum element?
Such an element must be at a leaf position in the
MinHeap.

How many leaves does the tree have? approximately n/2

therefore FindMax here is Ɵ(n) !!

cont'd

analogously, the minimum element in MaxHeap is

at one of the approx, n/2 leave positions ->

FindMin in a MaxHeap takes O(n) time.

Why would we care about finding both Min

and Max in a set?

Many reasons incl. the ones presented next!

How about maintenance

of the median?

• Let us first show how to create a heap that

allows the maintenance of the median under

insertions (new) and deletions (of Median).

Let S be a set of n elements (stored in an array).

 CreateMedianHeap(S) - first attempt

1. FindMedian using Select(S, floor(n/2))

2. Partition S around the median-> SL , SR

3. Create: MaxHeap on SL and MinHeap on SR

Median-heap

Median at root position

MaxHeap MinHeap

on SL on SR

Operation DeleteMedian

If we delete the Median

Where is the new median?

Depends on the relative sizes of SL and SR.

It is either the largest element in SLor the smallest

element in SR.

Finding one of these is one of the efficient

operations in the MaxHeap(SL) and MinHeap(SR).

Now how to insert?

• We insert by first comparing the element, called

new, to the median.

If new ≤ median then new is inserted in the left

heap, i.e., the MaxHeap

else new is inserted in the right heap, MinHeap

 After insertion, the Median may no longer be
right.

cont'd

• we check the relative sizes of the left and right

heaps.

• If the left heap is too heavy, we move the

Median into the right heap and put the max of

the left heap into the Median position.

• if the right heap is too heavy we move the

Median into the left heap and replace it by the

min of the right heap

Problems

A problem arises when we try to perform also the

operations DeleteMin/FindMin and

DeleteMax/FindMax

Where is the (global) minimum in the tree?

It must be in the left heap. Unfortunately, that is a

MaxHeap which makes the operations

DeleteMin/FindMin very inefficient.

Analogously, for the (global) maximum.

How to solve this?

We need a heap like data structure that

supports:
□ FindMin O(1)

□ DeleteMin O(log n)

□ Insert(new) O(log n)

□ Create O(n)

□ FindMax O(1)

□ DeleteMax O(log n)

MinMax-Heaps

minimum of all elements

maximum of all elements

recursively alternating between min

and max of the elements in the

subtrees

Min-Max Heap

Example

— see class

Back to the Median heap

Min-Max heap Min-Max-heap

 on elements ≤ median on elements > median

Creation

A comment on how to build/create the heap

1. FindMedian

2. Partition the elements around the Median call

the sets (as always) SL and SR.

 (partitioning step looks familiar?)

3. Build two Min-Max Heaps on sets SL and SR.

How fast can we Insert into a

Min-MaxHeap?

The operation, Insert(new), is very similar to that

of a "normal" heap. That is bottom up. The

difference is that we first determine if we are on a

max- or a min-level. Then, we perform a possible

swap with our parent node as required to keep

the correct order. This is then followed by

"bubbling up" two levels (instead of one as in

normal heaps) towards the root as far as

required.

How fast can we Create a

Min-MaxHeap?

The operation is also similar to that of creating a

"normal" heap. That is top-down. Again, the

difference is that we first determine if we are on a

max- or a min-level. Then, we perform a possible

swap with our child node as required to keep the

correct order. This is then followed by "trickle-

down" two levels (instead of one as in normal

heaps) towards the leaves as far as required.

• in class

Example

Median-Min-Max-Heap

Now, we have a heap that allows all these

operations to be performed efficiently
□ FindMin O(1)

□ FindMax O(1)

□ FindMedian O(1)

□ DeleteMin O(log n)

□ DeleteMax O(log n)

□ DeleteMedian O(log n)

□ Insert(new) O(log n)

□ Create O(n)

Other operations on Priority Queues

(Recall) Priority queue organization

are used for maintaining job queues

in OS under insertions of new jobs and jobs

get removed to be executed

the key is some prioritizations of the jobs

Merging

A useful operation is Merge

- Merge(P1, P2) // merges two priority queues (PQ) //

- Let n, k k≤ n be the sizes of the two PQs

- Let k-heap be the heap on the k elements

- and n-heap be the heap on the n elements

- Output: (n+k)-heap containing all elements.

Let us assume the two priority queues are implemented using

heaps.

Then, how fast could we merge two heaps?

Algorithms to Merge

Algorithm 1

— for each element of k-heap do

Insert(element) into n-heap to create the (n+k)-heap

Complexity:

each insertion into the (n+k)-heap takes O(log(n+k))

since k≤ n this is O(log n).

Total: k*O(log n)

Is this the best we can do?

Algorithm 2

Assume in Algorithm 1 that k is O(n) then Algorithm

1 runs in O(n log n) time.

But, we can Create a heap on all elements in

O(n+k)= O(n) time .

So, this is odd! By ignoring all structure and

creating the heap from scratch we get a better

algorithm (sometimes).

Comparison

So, when is Algorithm 1 better than

Algorithm 2?

when is k log n ≤ n ?

this means when k ≤ n/log n.

Can we do better?

Let us count only comparison, so no

data movements.

Brief Overview

no proofs will be required from you, but you
need to understand the ideas

See the paper on the course web-site for

more information.

Assume we have a heap like this n=19:

Indicated is the path to the last element. We cut each link on that path.

Merging Heaps

We organized the subtrees from the previous picture slightly

differently. Note that

1) the roots are sorted

2) the subtrees have sizes 2i for some i. call them pennants

3) there could be 0,1 or 2 “pennants” of the same size

Observations cont'd

If n is the size of heap then its decomposition into

a forest of pennants is unique.

We can count the number of pennants of size 2i

and call that number di. As said above, 0< di <2

There are at most m = log2 n pennants in total.

Let D = (dm,...., d0) be the vector describing the

unique decomposition.

For the above example, we get 19=(1,2,1,1)

cont'd

In some sense this is a new number

representation where each digit is 0,1, or 2.

Now for two input heaps with n and k elements

we can compute the descriptor.

Also, without even knowing the elements inside

we know the structure of the merged (n+k)-

heap because we can compute the descriptor.

Heaps

• Heaps are determined

1) their shape

2) their order

Let us not worry about the order for now.

1) shape:

Observation

Two pennants of the same size 2i can be

merged into a pennant of size 2i+1 in time

proportionally to their heights.

First since 2i + 2i = 2i+1 the size of the resulting

tree is 2i+1 and it is this a pennant.

How can they be merged in time proportionally to

their height?

Exercise! (simple)

Construction idea

To construct the (n+k)-heap we need the

pennants from the n-heap and the k-heap.

For this, we scan the descriptors of the three

heaps in parallel from right to left.

The dis of the n-heap and k-heap tell us which

pieces we have the dis of the (n+k)-heap tell us

what we need.

Observation (informal)

There is an observation (Lemma) that would

intuitively say the following:

- if, at some point i, the descriptor of (n+k)-heap

needs pennants of size 2i they will be available from

the n-heap or k-heap (or both)

— if we have too many pennants left after that, they

come in pairs are can be merged into the next larger

pennant size, (like a carry)

see class

Example

Heap order

To fix the heap order is more involved.

You are not required to know this.

Vague idea here: (details in paper)

Essentially it involves ordering roots from the two

pennant forest. We make sure that all roots of the

n-heap pennants are ≤ all roots of the k-heap

pennants, (assuming min-heaps)

This is done via trickle down operations on the

pennants of the k-heap. Total cost: logn * log k

Theorem - no proof

Theorem: Two heaps of size n, k can

merged in O(log n * log k) key

comparisons.

	Slide 1: Computer Science
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: So, can we do better?
	Slide 22: a second attempt fib2
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Golden ratio
	Slide 32: Golden ratio and Fibonacci
	Slide 33
	Slide 34
	Slide 35: A common strategy: loop invariant
	Slide 36
	Slide 37: A VERY simple example
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: correctness of the while-loop
	Slide 43: Proving the correctness of the while-loop
	Slide 44: Correctness while-loop cont’d
	Slide 45: Correctness while-loop cont’d
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84:
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170

